Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 823: 153742, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149058

RESUMEN

Biogeochemistry patterns in shallow lakes are influenced by both in-lake factors such as ecosystem state as well as watershed-level factors such as land use, but the relative importance of in-lake versus watershed factors is poorly known. This knowledge gap makes it difficult for lake mangers to prioritize efforts on watershed versus in-lake strategies for stabilizing the clear-water state. We studied 48 shallow lakes in Minnesota, USA to assess the relative influence of lake size, land use in watersheds, and ecosystem state (turbid versus clear) on water column total nitrogen (TN) and total phosphorus (TP), as well as δ15N and δ13C in three species of fish. Our land use categories included natural areas, row crop agriculture, and all agriculture (row crops plus alfalfa). A model selection approach revealed different control mechanisms on the behavior of stable isotopes and nutrients. δ13C ratios in fish were most strongly influenced by lake size, while δ15N ratios were influenced by all agriculture in watersheds. In contrast, water column TN and TP concentrations were influenced by the in-lake factor of ecosystem state, with both nutrients lower in the clear state. We detected no effects of land use on TN or TP concentrations, likely due to strong effects of ecosystem state masking watershed effects. However, the strong relationship between agriculture and δ15N in fish indicated that watersheds did influence nutrient processing in shallow lakes, and that effects are not a legacy from past watershed events. Collectively, these observations indicate that lake managers should minimize agricultural intensity in shallow lake watersheds to facilitate the clear-water state, which will, in turn reduce water-column TN and TP relative to the turbid state.


Asunto(s)
Ecosistema , Lagos , Animales , Monitoreo del Ambiente , Eutrofización , Isótopos/análisis , Nitrógeno/análisis , Nutrientes/análisis , Fósforo/análisis
2.
Proc Natl Acad Sci U S A ; 117(29): 17063-17067, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32631997

RESUMEN

Little is known about the exchange of gaseous nitrogen (N2) with the atmosphere in freshwater systems. Although the exchange of N2, driven by excess or deficiencies relative to saturation values, has little relevance to the atmospheric N2 pool due to its large size, it does play an important role in freshwater and marine nitrogen (N) cycling. N-fixation converts N2 to ammonia, which can be used by microbes and phytoplankton, while denitrification/anammox effectively removes it by converting oxidized, inorganic N to N2 We examined N2 saturation to infer net biological nitrogen processes in 34 lakes across 5° latitude varying in trophic status, mixing regime, and bathymetry. Here, we report that nearly all lakes examined in the upper Midwest (USA) were supersaturated with N2 (>85% of samples, n = 248), suggesting lakes are continuously releasing nitrogen to the atmosphere. The traditional paradigm is that freshwaters compensate for N-limitation through N-fixation, but these results indicate that lakes were constantly losing N to the atmosphere via denitrification and/or anammox, suggesting that terrestrial N inputs are needed to balance the internal N cycle.


Asunto(s)
Lagos , Nitrógeno/análisis , Argón/análisis , Gases de Efecto Invernadero/análisis , Lagos/análisis , Lagos/química , Minnesota , Fijación del Nitrógeno , Oxígeno/análisis
4.
Nat Microbiol ; 3(9): 977-982, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30143799

RESUMEN

Translating the ever-increasing wealth of information on microbiomes (environment, host or built environment) to advance our understanding of system-level processes is proving to be an exceptional research challenge. One reason for this challenge is that relationships between characteristics of microbiomes and the system-level processes that they influence are often evaluated in the absence of a robust conceptual framework and reported without elucidating the underlying causal mechanisms. The reliance on correlative approaches limits the potential to expand the inference of a single relationship to additional systems and advance the field. We propose that research focused on how microbiomes influence the systems they inhabit should work within a common framework and target known microbial processes that contribute to the system-level processes of interest. Here, we identify three distinct categories of microbiome characteristics (microbial processes, microbial community properties and microbial membership) and propose a framework to empirically link each of these categories to each other and the broader system-level processes that they affect. We posit that it is particularly important to distinguish microbial community properties that can be predicted using constituent taxa (community-aggregated traits) from those properties that cannot currently be predicted using constituent taxa (emergent properties). Existing methods in microbial ecology can be applied to more explicitly elucidate properties within each of these three categories of microbial characteristics and connect them with each other. We view this proposed framework, gleaned from a breadth of research on environmental microbiomes and ecosystem processes, as a promising pathway with the potential to advance discovery and understanding across a broad range of microbiome science.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Ecosistema , Microbiota/fisiología , Bacterias/clasificación
5.
Environ Sci Pollut Res Int ; 25(22): 22023-22034, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29797202

RESUMEN

Antibiotics are used to fight diseases in humans and farm animals. Their residues, however, can enter aquatic environments and affect the resistance of non-target microbial strains, and the prevalence of antibiotic resistance genes (ARGs) potentially poses negative impacts on human health. In order to better understand how the studies of antibiotics have been conducted, we analyzed the publications on antibiotics in aquatic systems for the period of 1945-2017. We applied a bibliometric analysis method by coupling cluster analysis and network analysis. Results indicated that early research on antibiotics in water was mostly performed in America and Europe, while, in recent years, publications for the same subject were dominated by China and the USA. The majority of the articles were published in journal Chemosphere and the most representative subject categories of the seven sections were "Environmental science and ecology," "Chemistry," "Engineering," "Biochemistry and molecular biology," "Water resources," "Agriculture," and "Pharmacology and pharmacy." The most studied class of antibiotics was tetracyclines in wastewater. Antibiotic resistance, ARGs, Escherichia coli, and some mechanistic studies such as adsorption, toxicity, degradation, and kinetics were common topics in this field. ARGs present a major public health concern and much attention should be directed at the problems with antibiotics in the future studies of water.


Asunto(s)
Antibacterianos , Investigación/estadística & datos numéricos , Publicaciones Seriadas/estadística & datos numéricos , Contaminantes Químicos del Agua , Agricultura , Animales , Antibacterianos/análisis , Antibacterianos/toxicidad , China , Análisis por Conglomerados , Farmacorresistencia Microbiana/genética , Europa (Continente) , Humanos , Cooperación Internacional , Tetraciclinas/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Environ Sci Technol ; 52(6): 3375-3383, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29488749

RESUMEN

We examined how different landscape areas in a catchment containing a northern ombrotrophic peatland and upland mineral soils responded to dramatic decreases in atmospheric deposition of lead (Pb). Pb concentrations in the outflow stream from the peatland measured from 2009-2015 indicated continued mobilization and export of Pb derived from historic inputs to the bog. In contrast, Pb concentrations in surface peat and runoff from upland mineral soils have declined in response to reductions in atmospheric deposition. Relative to the early 1980s, Pb concentrations in the streamflow decreased only ∼50%, while Pb in surface peat and upland subsurface runoff decreased by more than 90%. Water level fluctuations in the slow-accumulating peat have allowed dissolved organic matter (DOM) to continue mobilizing Pb deposited in the peatland decades earlier. Strong correlations between dissolved organic carbon (DOC) and Pb concentrations in outflow from the peatland and in bog porewaters demonstrate Pb mobility related to DOM production. Peat stores of Pb in 2016 were less than or equal to those reported in the early 1980s despite the dry mass inventory increasing by 60-80%. Much of the loss in Pb stored in peat can be accounted for by stream runoff from the peatland.


Asunto(s)
Monitoreo del Ambiente , Plomo , Carbono , Ríos , Suelo
7.
J Hazard Mater ; 348: 100-108, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29422192

RESUMEN

Biochar application has attracted great attention due to its diverse uses and benefits in the fields of environmental management and agriculture. Biochar modifies the composition of dissolved organic matter (DOM) in soil, which directly or indirectly controls the mobility of metal contaminants and their bioaccumulation. In this study, ten different hydrothermal biochars pyrolysed from mushroom waste (MSBC), soybean straw (SBBC), sewage sludge (SSBC), peanut shells (PNBC) and rice straw (RSBC) at two pyrolysis temperatures (200 °C and 350 °C) were used to investigate DOM changes in soil solution and their effects on metal availability and bioaccumulation. Biochar induced modification of soil DOM which was characterized by spectroscopic analysis of water soluble organic carbon, specific absorbance (SUVA254), UV-vis absorption, spectral slope (SR) and the absorption coefficient. Regarding rice plant growth, the biochar effects on biomass were greatly varied. Biochars (except for RSBC and MSBC) prepared at high temperature significantly (P ≤ 0.05) suppressed the availability of As and Cd in soil and their subsequent bioaccumulation in rice plants. The highest reduction (88%) in bioaccumulated As was observed in rice grown on soil amended with SBBC prepared at 350 °C (the highest temperature for hydrothermal technique). The addition of biochars (except RSBC and MSBC) prepared at high temperature markedly (p < 0.05) decreased AsIII (30-92%), while the effects on dimethylarsenic acid (DMA) and arsenate (AsV) concentrations were not significant except for SSBC350 (prepared at 350 °C) treatment. These results highlight the potential of biochar-DOM interactions as an important mechanism for suppressing the mobility and bioaccumulation of As and Cd in biochar-amended paddy agricultural systems.


Asunto(s)
Arsénico/metabolismo , Cadmio/metabolismo , Carbón Orgánico , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Solubilidad , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
8.
ISME J ; 12(2): 598-609, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29171840

RESUMEN

The elemental content of microbial communities is dependent upon the physiology of constituent populations, yet ecological stoichiometry has made slow progress toward identifying predictors of how species and strains change the elemental content of their biomass in response to the stoichiometry of elements in resources. We asked whether the elemental content of aquatic bacteria, especially flexibility in elemental content, could be predicted by their phylogeny, maximum growth rate or lake productivity. We examined 137 isolates using chemostats and found that strains differed substantially in how the carbon:nitrogen:phosphorus ratios (C:N:P) in their biomass responded to P-sufficient and P-limiting conditions. The median strain increased its biomass C:N:P from 68:14:1 to 164:25:1 under P limitation. Patterns in elemental content and ratios were partly explained by phylogeny, yet flexibility in elemental content showed no phylogenetic signal. The growth rate hypothesis predicts that P content is positively related to growth rate, but we found weak correlation between maximum growth rate and P content among the strains. Overall, isolates from highly productive lakes had higher maximum growth rates and less flexible biomass N:P than isolates from unproductive lakes. These results show that bacteria present within lake communities exhibit diverse strategies for responding to elemental imbalance.


Asunto(s)
Bacterias/crecimiento & desarrollo , Procesos Heterotróficos , Lagos/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biomasa , Carbono/análisis , Nitrógeno/análisis , Fósforo/análisis , Filogenia
9.
Front Microbiol ; 8: 1692, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28943865

RESUMEN

Two contemporary effects of humans on aquatic ecosystems are increasing temperatures and increasing nutrient concentrations from fertilizers. The response of organisms to these perturbations has important implications for ecosystem processes. We examined the effects of phosphorus (P) supply and temperature on organismal carbon, nitrogen and phosphorus (C, N, and P) content, cell size and allocation into internal P pools in three strains of recently isolated bacteria (Agrobacterium sp., Flavobacterium sp., and Arthrobacter sp.). We manipulated resource C:P in chemostats and also manipulated temperatures from 10 to 30°C. Dilution rates were maintained for all the strains at ~25% of their temperature-specific maximum growth rate to simulate low growth rates in natural systems. Under these conditions, there were large effects of resource stoichiometry and temperature on biomass stoichiometry, element quotas, and cell size. Each strain was smaller when C-limited and larger when P-limited. Temperature had weak effects on morphology, little effect on C quotas, no effect on N quotas and biomass C:N, but had strong effects on P quotas, biomass N:P and C:P, and RNA. RNA content per cell increased with increasing temperature at most C:P supply ratios, but was more strongly affected by resource stoichiometry than temperature. Because we used a uniform relative growth rate across temperatures, these findings mean that there are important nutrient and temperature affects on biomass composition and stoichiometry that are independent of growth rate. Changes in biomass stoichiometry with temperature were greatest at low P availability, suggesting tighter coupling between temperature and biomass stoichiometry in oligotrophic ecosystems than in eutrophic systems. Because the C:P stoichiometry of biomass affects how bacteria assimilate and remineralize C, increased P availability could disrupt a negative feedback between biomass stoichiometry and C availability.

10.
Front Microbiol ; 8: 1505, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848518

RESUMEN

The canonical Redfield C:N:P ratio for algal biomass is often not achieved in inland waters due to higher C and N content and more variability when compared to the oceans. This has been attributed to much lower residence times and higher contributions of the watershed to the total organic matter pool of continental ecosystems. In this study we examined the effect of water residence times in low latitude lakes (in a gradient from humid to a semi-arid region) on seston elemental ratios in different size fractions. We used lake water specific conductivity as a proxy for residence time in a region of Eastern Brazil where there is a strong precipitation gradient. The C:P ratios decreased in the seston and bacterial size-fractions and increased in the dissolved fraction with increasing water retention time, suggesting uptake of N and P from the dissolved pool. Bacterial abundance, production and respiration increased in response to increased residence time and intracellular nutrient availability in agreement with the growth rate hypothesis. Our results reinforce the role of microorganisms in shaping the chemical environment in aquatic systems particularly at long water residence times and highlights the importance of this factor in influencing ecological stoichiometry in all aquatic ecosystems.

11.
Ecol Appl ; 27(7): 2155-2169, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28692788

RESUMEN

Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often managed for the clear-water state due to increased value as wildlife habitat. However, our results indicate lake state also influences N biogeochemistry, such that managing shallow lakes for the clear-water state may also mitigate excess N levels at a landscape scale.


Asunto(s)
Desnitrificación , Lagos/química , Nitrógeno/química , Fósforo/química , Animales , Biomasa , Eutrofización , Peces , Minnesota
12.
Front Microbiol ; 8: 722, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28487686

RESUMEN

Elemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolutionary basis, and ecological consequences of such diversity is a central challenge. Here, we propose that a more complete understanding of homeostasis necessitates the consideration of other elements beyond C, N, and P. Specifically, we posit that physiological complexity underlying maintenance of elemental homeostasis along a single elemental axis impacts processing of other elements, thus altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a wide variety of organisms have found that individuals differentially express significant proportions of the genome in response to variability in supply stoichiometry in order to maintain varying levels of homeostasis. We review the literature from the emergent field of ionomics that has established the consequences of such physiological trade-offs on the content of the entire suite of elements in an individual. Further, we present experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes demonstrating the fundamental interconnectedness among elemental quotas. These observations suggest that physiological adjustments can lead to unexpected patterns in biomass stoichiometry, such as correlated changes among suites of non-limiting microelements in response to limitation by macroelements. Including the entire suite of elements that comprise biomass will foster improved quantitative understanding of the links between chemical cycles and the physiology of organisms.

13.
Ecology ; 98(3): 820-829, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27995610

RESUMEN

The effects of resource stoichiometry and growth rate on the elemental composition of biomass have been examined in a wide variety of organisms, but the interaction among these effects is often overlooked. To determine how growth rate and resource imbalance affect bacterial carbon (C): nitrogen (N): phosphorus (P) stoichiometry and elemental content, we cultured two strains of aquatic heterotrophic bacteria in chemostats at a range of dilution rates and P supply levels (C:P of 100:1 to 10,000:1). When growing below 50% of their maximum growth rate, P availability and dilution rate had strong interactive effects on biomass C:N:P, elemental quotas, cell size, respiration rate, and growth efficiency. In contrast, at faster growth rates, biomass stoichiometry was strongly homeostatic in both strains (C:N:P of 70:13:1 and 73:14:1) and elemental quotas of C, N, and P were tightly coupled (but not constant). Respiration and cell size increased with both growth rate and P limitation, and P limitation induced C accumulation and excess respiration. These results show that bacterial biomass stoichiometry is relatively constrained when all resources are abundant and growth rates are high, but at low growth rates resource imbalance is relatively more important than growth rate in controlling bacterial biomass composition.


Asunto(s)
Organismos Acuáticos/fisiología , Bacterias/metabolismo , Biomasa , Bacterias/crecimiento & desarrollo , Carbono/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Microbiología del Agua
14.
Environ Sci Technol ; 51(1): 3, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28001049
15.
Ecol Appl ; 26(8): 2660-2674, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27907264

RESUMEN

Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention.


Asunto(s)
Cadena Alimentaria , Fitoplancton , Animales , Ecosistema , Lagos , América del Norte
16.
Zebrafish ; 13(4): 248-55, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27093037

RESUMEN

Parasites that rely on trophic transmission can manipulate the behavior of an intermediate host to compromise the host's antipredator competence and increase the probability of reaching the next host. Selection for parasite manipulation is diminished when there is significant risk of host death to causes other than consumption by a suitable definitive host for the parasite. Consequently, behavioral manipulation by parasites can be expected to be subtle. Ornithodiplostomum ptychocheilus (Op) is a trematode parasite that has a bird-snail-fish host life cycle. Fathead minnows are a common intermediate host of Op, where metacercariae encyst in the minnow brain. In this study, we report a link between metacercarial intensity and behavior in fathead minnows. In the field, we found that roaming distance by free-living minnows over 24 h was negatively correlated with parasite intensity. In the laboratory, we found that boldness in an open field test was positively correlated with parasite intensity. These parasite-induced behavioral changes may render infected minnows more susceptible to predators, which would serve to facilitate trophic transmission of parasites to the bird host.


Asunto(s)
Cyprinidae , Enfermedades de los Peces/epidemiología , Interacciones Huésped-Parásitos , Trematodos/fisiología , Infecciones por Trematodos/veterinaria , Animales , Cyprinidae/fisiología , Conducta Exploratoria , Femenino , Enfermedades de los Peces/parasitología , Incidencia , Lagos , Masculino , Minnesota/epidemiología , Infecciones por Trematodos/epidemiología , Infecciones por Trematodos/parasitología
17.
Microb Ecol ; 71(4): 814-24, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26879939

RESUMEN

In this study, we utilized Illumina next-generation sequencing of 16S rDNA to characterize the bacterial communities in water, sediments, and soils at four sites along the Mississippi River and Minnesota River, in Minnesota, in order to evaluate community exchanges between these habitats. Communities in water and sediment were hypothesized to show greater taxonomic similarity than those in soil, while microbial communities in sediment and soil would show greater functional similarity. Habitat-specific communities showed significant differences in phylogenetic structure and ß-diversity (P < 0.001), but site-specific differences in community structures within a single habitat type did not differ greatly (P ≥ 0.083). Community exchange among habitats generally influenced < 5% of the total community composition in a single sample, with the exception of the sediment community at the Minnesota River site, which contributed to a mean of 14% of the microbial community in the water column. Communities from all habitat types were significantly correlated with each other (r = 0.44-0.64, P ≤ 0.004). Furthermore, approximately 33% of the taxonomic units were found in all samples and comprised at least 40% of the bacterial community. Functional annotation of shotgun sequencing data revealed similar functional profiles for sediment and soil communities that were distinct from those in the water. Results of this study suggest that sediments, when disturbed, contribute significantly to bacterial communities in the water and that a core bacterial community may be supported in the soils and sediments. Furthermore, a high degree of functional redundancy results in similar functional profiles in sediment and soil communities.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Ríos/microbiología , Suelo/química , Biodiversidad , ADN Bacteriano/genética , Ecosistema , Sedimentos Geológicos/química , Minnesota , Mississippi
18.
J Water Health ; 13(3): 693-703, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26322755

RESUMEN

In this study, we determined the frequency of antibiotic resistance genes (ARGs) in the Upper Mississippi River using a high-throughput, functional, metagenomic screening procedure. Fosmid libraries containing ∼10,000 clones were screened for resistance to ampicillin, cephalothin, kanamycin, and tetracycline. We hypothesized that nutrient concentrations, land cover type, and taxonomic community composition may select for ARGs. Resistance to ampicillin, cephalothin, and kanamycin was low (<1.00%), and no resistance to tetracycline was detected. Ammonium and total dissolved solids (TDS) concentrations were correlated with kanamycin and cephalothin resistances (r=0.617 and -0.449, P=0.002 and 0.036, respectively). Cephalothin resistance was also positively correlated with the percentage of forested land cover (r=0.444, P=0.039). Only the candidate division OD1, among 35 phyla identified, was correlated with ampicillin resistance (r=0.456, P=0.033), suggesting that minority members of the community may be responsible for dissemination of ARGs in this ecosystem. Results of this study suggest that ammonium and TDS may be involved in a complex selection process for ARGs. Furthermore, we suggest that minority species, potentially contributed in low numbers from sediment and biofilm reservoirs, may be the primary carriers of ARGs in this riverine system.


Asunto(s)
Bacterias/genética , Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Ríos/microbiología , ADN Bacteriano/análisis , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Mississippi , Análisis de Secuencia de ADN , Microbiología del Agua
19.
J Microbiol Methods ; 114: 43-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956022

RESUMEN

Reduction in costs of next-generation sequencing technologies has allowed unprecedented characterization of bacterial communities from environmental samples including aquatic ecosystems. However, the extent to which extrinsic factors including sampling volume, sample replication, DNA extraction kits, and sequencing target affect the community structure inferred are poorly explored. Here, triplicate 1, 2, and 6L volume water samples from the Upper Mississippi River were processed to determine variation among replicates and sample volumes. Replicate variability significantly influenced differences in the community α-diversity (P=0.046), while volume significantly changed ß-diversity (P=0.037). Differences in phylogenetic and taxonomic community structure differed both among triplicate samples and among the volumes filtered. Communities from 2L and 6L water samples showed similar clustering via discriminant analysis. To assess variation due to DNA extraction method, DNA was extracted from triplicate cell pellets from four sites along the Upper Mississippi River using the Epicentre Metagenomic DNA Isolation Kit for Water and MoBio PowerSoil kit. Operational taxonomic units representing ≤14% of sequence reads differed significantly among all sites and extraction kits used, although differences in diversity and community coverage were not significant (P≥0.057). Samples characterized using only the V6 region had significantly higher coverage and lower richness and α-diversity than those characterized using V4-V6 regions (P<0.001). Triplicate sampling of at least 2L of water provides robust representation of community variability, and these results indicate that DNA extraction kit and sequencing target displayed taxonomic biases that did not affect the overall biological conclusions drawn.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Técnicas Bacteriológicas/métodos , Biota , Metagenómica/métodos , Ríos/microbiología , Reproducibilidad de los Resultados
20.
ISME J ; 9(10): 2324-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25798755

RESUMEN

Bacteria are central to the cycling of carbon (C), nitrogen (N) and phosphorus (P) in every ecosystem, yet our understanding of how tightly these cycles are coupled to bacterial biomass composition is based upon data from only a few species. Bacteria are commonly assumed to have high P content, low biomass C:P and N:P ratios, and inflexible stoichiometry. Here, we show that bacterial assemblages from lakes exhibit unprecedented flexibility in their P content (3% to less than 0.01% of dry mass) and stoichiometry (C:N:P of 28: 7: 1 to more than 8500: 1200: 1). The flexibility in C:P and N:P stoichiometry was greater than any species or assemblage, including terrestrial and aquatic autotrophs, and suggests a highly dynamic role for bacteria in coupling multiple element cycles.


Asunto(s)
Bacterias/metabolismo , Carbono/análisis , Procesos Heterotróficos , Lagos/microbiología , Nitrógeno/análisis , Fósforo/análisis , Biomasa , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...